

# 

Open-Source Power Systems Analysis Packages: Crosspackage Coordination for System Planning

Special Interest Group on Open-source Power System Planning Tools June 22, 2022

## Zoom Housekeeping

- This webinar is **being recorded** and will be shared with attendees.
- You will be **automatically muted** upon joining and throughout the webinar.
- Please use the **chat feature** to add comments and share input.
- Please use the **Q&A function** to ask questions and ensure your question is answered. You can find this function in your toolbar.
- If you have **technical issues**, please use the chat feature to message Emily Klos.
- You can adjust your audio through the **audio settings.** If you are having issues, you can also dialin and listen by phone. Dial-in information can be found in your registration email.
- There is a **short survey** that will launch at the end of the webinar. Your survey responses help us tailor training content, improve your webinar experience, and gain support to host future trainings.

## G-PST and LF Energy Overview

Juha Kiviluoma G-PST Pillar 5 Lead, VTT Finland

**Benoît Jeanson** Enterprise Architect, Open-Source Program Office of RTE (French TSO), **RTE France** 

#### Contributors



Roman Bolgaryn Researcher Fraunhofer IEE



Shuli Goodman Executive Director LF Energy



Nicolas Omont Vice President of Operations Artelys



Hannele Holttinen G-PST Pillar 5 Lead Recognis Consultnig



Clayton Barrows Senior Engineer NREL



Maximilian Parzen Director / PhD Candidate PyPSA meets Earth Initiative / University of Edinburgh



Dheepak Krishnamurthy Distribution Systems Researcher NREL



Benoît Jeanson Enterprise Architect, Open-Source Program Office of RTE (French TSO) RTE France



Juha Kiviluoma G-PST Pillar 5 Lead VTT, Finland



# Global Power System Transformation Consortium advances action in 5 key areas



**INTERIM SECRETARIAT** – Work program coordination, partnerships and support, outreach, etc.



## 

Providing a 21st century plan of action to decarbonization through open source, open frameworks, reference architectures, and a support ecosystem of complementary projects.







The Power of Together

## LF Energy Members





- Introduction
- Workflow and Tool Demonstrations
- Outcomes and Lessons

## Contributors

- G-PST
  - Hannele Holtenen Recognis
  - Juha Kiviluoma VTT
- PyPSA
  - Max Parzen University of Edinburgh
- pandapower
  - Roman Bolgaryn Fraunhofer IEE
  - Sadia Ferdous Snigdha Fraunhofer IEE & TU Ilmenau
- PowSybl
  - Benoit Jeanson RTE
  - Nicolas Omont Artelys
- PowerSimulations.jl
  - Clayton Barrows NREL
  - Dheepak Krishnamurthy NREL





# 

PowerSystems.jl PowerSimulations.jl



# Data

- RTS-GMLC (github.com/gridmod/rts-gmlc)
  - 73 buses, 120 branches, and 115 generators

#### **Problem and Workflow Specification**

• Event 2: System expansion planning and analysis



New Capacity expansion (new assets can be build)



- Perform invest and dispatch <u>co-optimization</u>
- Add investment costs
- Add constraints (i.e.CO2)
- Add load scenario





## Value Proposition

- Demonstration of open-source power systems modeling capabilities
- Coordination:
  - Utilize the strengths of multiple tools to perform a diverse set of analysis
  - Standardize data specifications, enhance/build tool interoperability

## Workflow Step Demonstrations

Maximilian Parzen, Co-steering the PyPSA meets Earth initiative



Official website: <u>https://pypsa.org/</u> GitHub repository: <u>https://github.com/PyPSA</u> Documentation: <u>https://pypsa.readthedoc</u> <u>s.io/en/latest/</u>



#### What is PyPSA?

Power system tools

Energy system tools

#### Purpose:

- A tool that can do both economic and grid analysis
- Developed for large-scale optimization and
- Studies in high spatial resolution

|              |         |          |               |            | Grid Analysis              |                     |   |                 | Economic Analysis |        |               |                              |                 |                            |                         |  |
|--------------|---------|----------|---------------|------------|----------------------------|---------------------|---|-----------------|-------------------|--------|---------------|------------------------------|-----------------|----------------------------|-------------------------|--|
| Software     | Version | Citation | Free Software | Power Flow | Continuation<br>Power Flow | Dynamic<br>Analysis |   | Transport Model | Linear OPF        | SCLOPF | Nonlinear OPF | Multi-Period<br>Optimisation | Unit Commitment | Investment<br>Optimisation | Other Energy<br>Sectors |  |
| MATPOWER     | 6.0     | [6]      | 1             | 1          | 1                          |                     |   | 1               | 1                 |        | 1             |                              |                 |                            |                         |  |
| NEPLAN       | 5.5.8   | [2]      | ,             | 1          |                            | ~                   |   | 1               | 1                 | ~      | 1             |                              |                 |                            | ~                       |  |
| PowerFactory | 2017    | [9]      | ~             | 1          |                            | 1                   |   | •               | 1                 | 1      | 1             |                              |                 |                            |                         |  |
| PowerWorld   | 19      | [3]      |               | 1          |                            | 1                   |   | 1               | 1                 | 1      | 1             |                              |                 |                            |                         |  |
| PSAT         | 2.1.10  | [7]      | 1             | 1          | 1                          | 1                   |   | -               | 1                 | -      | 1             | 1                            | 1               |                            |                         |  |
| PSS/E        | 33.10   | [4]      |               | 1          |                            | 1                   |   |                 | 1                 | 1      | 1             |                              |                 |                            |                         |  |
| PSS/SINCAL   | 13.5    | [5]      |               | 1          |                            | 1                   |   |                 |                   |        | 1             |                              |                 |                            | ~                       |  |
| PYPOWER      | 5.1.2   | [8]      | ~             | ~          |                            |                     |   | ~               | ~                 |        | ~             |                              |                 |                            |                         |  |
| PyPSA        | 0.11.0  |          | 1             | 1          |                            |                     |   | 1               | 1                 | 1      |               | 1                            | 1               | 1                          | $\checkmark$            |  |
| calliope     | 0.5.2   | [11]     | 1             |            |                            |                     |   | 1               |                   |        |               | 1                            |                 | 1                          | 1                       |  |
| minpower     | 4.3.10  | [12]     | ✓             |            |                            |                     |   | 1               | 1                 |        |               | 1                            | 1               |                            |                         |  |
| MOST         | 6.0     | [13]     | 1             | 1          | ~                          |                     |   | 1               | 1                 | 1      | 1             | 1                            | 1               |                            |                         |  |
| oemot        | 0.1.4   | [14]     | 1             |            |                            |                     |   | 1               |                   |        |               |                              | 1               |                            |                         |  |
| PLEXOS       | 7.400   | [16]     | ~             |            |                            |                     |   | <i>√</i>        | 1                 | 1      |               | 1                            | 1               | 1                          | <i></i>                 |  |
| PowerGAMA    | 1.1     | [17]     | 1             |            |                            |                     | - | 1               | 1                 |        |               | 1                            |                 |                            |                         |  |
| PRIMES       | 2017    | [18]     |               |            |                            |                     |   | 1               | 1                 |        |               | 1                            | 1               | ~                          | 1                       |  |
| TIMES        | 2017    | [19]     |               |            |                            |                     |   | 1               | 1                 |        |               | 1                            | 1               | 1                          | 1                       |  |
| urbs         | 0.7     | [20]     | 1             |            |                            |                     |   | 1               |                   |        |               | 1                            | 1               | 1                          | 1                       |  |



New Capacity expansion (new assets can be built)

# A Pypsn

- Add data for 1 year!
- Add investment costs
- Add constraints (i.e.CO2)
- Add load scenario

New Capacity expansion (new assets can be built)



#### **5 SCENARIOS:**

#### d = {

"scenario": [
"RTS\_GMLC\_base", # no expansion but opf
"RTS\_GMLC\_base+line\_expansion", # line expansion and opf
"RTS\_GMLS\_base+gen\_expansion", # generation expansion and constraints, ;
"RTS\_GMLS\_base+gen\_and\_line\_expansion", # generation expansion and const
"RTS\_GMLS\_1p5xload+0emission+gen\_and\_line\_expansion", # generation expan],

#### Existing RTS-GMLC



#### Pandapower import of Matpower

```
_sets_path_to_root("power-flow-exercise")
net=load_rts_grid()
# and convert to pypsa
network=convert_to_pypsa(net)
n = network
```

prepare pandapower network for pypsa

## Required some renaming:

```
net.gen.loc[:, "fuel"] = net.gen["fuel"].replace({
        "Oil": "oil".
       "Coal": "coal",
        "Nuclear": "nuclear",
       "Hydro": "hydro",
   })
ccat condition = (net.gen["fuel"]=="NG") & (net.gen["type"]=="CC")
ocgt condition = (net.gen["fuel"]=="NG") & (net.gen["type"]=="CT")
sync condition = (net.gen["fuel"]=="Sync Cond")
net.gen.loc[ccgt condition, "fuel"] = net.gen.loc[ccgt condition, "fuel"].replace({"NG": "CCGT",})
net.gen.loc[ocgt condition, "fuel"] = net.gen.loc[ocgt condition, "fuel"].replace({"NG": "OCGT",})
net.gen = net.gen.drop(net.gen[sync condition].index) # remove sync cond
net.sgen.loc[:, "fuel"] = net.sgen["fuel"].replace({
        "Oil": "oil",
        "Coal": "coal",
        "Nuclear": "nuclear",
        "Hydro": "hydro",
       "Solar": "solar".
        "Wind": "onwind",
   })
ccqt condition = (net.sgen["fuel"]=="NG") & (net.sgen["type"]=="CC")
ocgt condition = (net.sgen["fuel"]=="NG") & (net.sgen["type"]=="CT")
storage_condition = (net.sgen["fuel"]=="Storage")
net.sgen.loc[ccgt_condition, "fuel"] = net.sgen.loc[ccgt_condition, "fuel"].replace({"NG": "CCGT",})
net.sgen.loc[ocgt_condition, "fuel"] = net.sgen.loc[ocgt_condition, "fuel"].replace({"NG": "OCGT",})
```

net.sgen = net.sgen.drop(net.sgen[storage condition].index) # remove storage

#### New Capacity expansion (new assets can be built)



- Add data for 1 year!
- Add investment costs •
- Add constraints (i.e. CO2)
- Solve •

#### Load and prepare time-series (for all tech)

load\_path = os.path.join(os.getcwd(), "example-pypsa/timeseries\_files/Load/bus\_load.csv") utpv\_path = os.path.join(os.getcwd(), "example-pypsa/timeseries\_files/PV/DAY\_AMEAD\_pv.csv") rtpv\_path = os.path.join(os.getcwd(), "example-pypsa/timeseries\_files/RTPV/DAY\_AHEAD\_rtpv.csv") wind path = os.path.join(os.getcwd(), "example-pypsa/timeseries files/Wind/DAY AHEAD wind.csv") hydro\_path = os.path.join(os.getcwd(), "example-pypsa/timeseries\_files/Hydro/DAY\_AHEAD\_hydro.csv")

utpv\_series = pd.read\_csv(utpv\_path) utpy series.rename(columns={"Period": "Hour"}, errors="raise", inplace=True) utpv\_series.index = pd.to\_datetime(utpv\_series[['Year', 'Month', 'Day','Hour']]) utpv\_series = utpv\_series.drop(columns=['Year', 'Month', 'Day', 'Mour']) utpy series pu = utpy series/utpy series.max() utpy series max potential = utpy series.max() \* res scale

rtpv\_series = pd.read\_csv(rtpv\_path) rtny series repare(columns("Period": "Hour") errors-"raise" inplace-True) rtpv\_series.index = pd.to\_datetime(rtpv\_series[['Year', 'Month', 'Day', 'Hour']]) rtpv\_series = rtpv\_series.drop(columns=['Year', 'Month', 'Day', 'Hour']) rtpv\_series\_pu = rtpv\_series/rtpv\_series.max() rtpv\_series\_max\_potential = rtpv\_series.max() \* res\_scale

wind series = pd.read csv(wind path)

wind\_series.rename(columns={"Period": "Hour"}, errors="raise",inplace=True) wind\_series.index = pd.to\_datetime(wind\_series[['Year', 'Month', 'Day', 'Hour']]) wind series = wind series.drop(columns=['Year', 'Month', 'Dav', 'Hour']) wind series pu = wind series/wind series.max() wind series max potential = wind series.max() \* res scale

hydro series = pd.read csv(hydro path) hydro\_series.rename(columns={"Period": "Hour"}, errors="raise", inplace=True) hydro\_series.index = pd.to\_datetime(hydro\_series[['Year', 'Month', 'Day', 'Mour']]) hydro\_series = hydro\_series.drop(columns=['Year', 'Month', 'Day', 'Hour']) hydro\_series\_pu = hydro\_series/hydro\_series.max() hydro\_series\_max\_potential = hydro\_series.max() \* res\_scale

# In[20]:

load\_series = pd.read\_csv(load\_path) load\_series["DateTime"] = pd.to\_datetime(load\_series["DateTime"]) load series.set index("DateTime" inplace=True) load series = load series \* load scale load\_series.columns = [element.upper() for element in load\_series.columns]



- Add data for 1 year!
- Add investment costs
- Add constraints (i.e. CO2)
- Solve

#### Add time-series to network

n.madd("Generator",

wind\_series\_pu.columns,

bus=wind\_series\_pu.columns,

p\_nom\_extendable=True,

p\_max\_pu=wind\_series\_pu,

p\_nom\_max=wind\_series\_max\_potential)

## New Capacity expansion (new assets can be built)



- Add data for 1 year!
- Add investment costs
- Add constraints (i.e.CO2)
- Solve

# Load costs and data modification

# In[8]:

costs = load\_costs(Nyears=1., tech\_costs=None, config=None, elec\_config=None)

n.generators.loc[:,"capital\_cost"] = n.generators["carrier"].map(costs.capital\_cost)
n.generators.loc[:,"marginal\_cost"] = n.generators["carrier"].map(costs.marginal\_cost)
n.generators.loc[:,"lifetime"] = n.generators["carrier"].map(costs.lifetime)
n.generators.loc[:,"efficiency"] = n.generators["carrier"].map(costs.efficiency)





- Add data for 1 year!
- Add investment costs
- Add constraints (i.e.CO2)
- Solve

def add\_co2limit(n, co2limit, Nyears=1.):

```
n.add("GlobalConstraint", "CO2Limit",
    carrier_attribute="co2_emissions", sense="<=",
    constant=co2limit * Nyears)
```





- Add data for 1 year!
- Add investment costs
- Add constraints (i.e.CO2)
- Solve

ilopf(n, solver\_name=solver\_name, solver\_options=solver\_options, track\_iterations=track\_iterations, min\_iterations=min\_iterations, max\_iterations=max\_iterations, extra\_functionality=extra\_functionality, \*\*kwargs)











#### BUILDING A MODEL TAKES TIME... VALIDATING AND MAINTAINING IT DOES, TOO...



Photo by christopher lemercier https://unsplash.com/photos/12yvdCiLaVE

(cc)

#### PyPSA is a framework. We build tools on top.





#### **PyPSA-Earth: The Wikipedia for energy models.**



A highly flexible sectorcoupled energy system model of the global energy system

- MODEL ANY COUNTRY OF THE EARTH WITH GLOBAL
   DEFAULT DATA WORKFLOW
  - **REPLACE DEFAULT DATA WITH CUSTOM DATA** WORKFLOW THAT CAN BE SHARED = SUSTAINED (OR NOT)



"PyPSA meets Earth's vision is to create together the most compelling open-data and open-source planning tools to accelerate the world's sustainable energy transition."

CHALLENGE THE BLACK-BOX MODELLING STANDARD





## MAXIMILIAN PARZEN

Co-steering the PyPSA meets Earth initiative

Address: Institute of Energy Systems University of Edinburgh Kings Building EH9 3JL Edinburgh, UK +49 176 70889068

THE UNIVERSITY of EDINBURGH





max.parzen@ed.ac.uk

🍯 @maxparzen



pandapower

Roman Bolgaryn Researcher, Fraunhofer IEE

#### pandapower

#### Useful links



IEE

Official website: <u>http://www.pandapower.org/</u> GitHub repository: <u>https://github.com/e2nIEE/pandapower</u> Documentation: <u>https://pandapower.readthedocs.io</u>
### Case study for the RTS grid



- Adjustments had to be made for the case study for AC-feasibility
  - Model conventional generation as PV node instead of PQ node
  - Use distributed slack with conventional generation
  - Add transformer tap changer controllers

### Case study: scenario



- The scenario represents the load, conventional generation and renewable generation
- The conventional generation is used to cover the gap between the load and renewable generation

### Case study: initial line loading



- Input data: load profiles and renewable generation profiles
  - Conventional generation is considered in a simplified manner: balancing with the distributed slack approach, weighed by the installed power
- This results in line overloading during many time steps

### Case study: method

$$egin{aligned} & ext{minimize} \ \sum \left( c_K^T \cdot igtriangleq P_K 
ight) \ & ext{subject to} \ I_{ft} - DF_{ft} \cdot igtriangleq P_K \leq I_{max,ft} \ & I_{ft} - DF_{ft} \cdot igtriangleq P_K \geq -I_{max,ft} \ & ext{(for every line (f, t))} \ & ext{0} \leq igtriangleq P_K \leq P_{max,K} \end{aligned}$$

- AC-OPF with LP problem formulation
- Positive costs for conventional generation and negative costs for renewable generation
- OPF can be repeated with load shedding enabled for the time steps that fail. It was required for 1 time step in the case study

### Case study: line loading



 The line loading could be maintained within a set limit for all time steps

### Case study: generation



- The redispatch of conventional generation is not very high in overall (in absolute values)
- Reason: the balancing was already done with distributed slack
- The OPF is redistributing the conventional generation across the power system
- Renewable generation did not need to be redispatched

### **Conclusions and Further work**

- Challenges in AC LP-OPF:
  - Performance
  - "Oscillations" of the solution
- Advantages:
  - AC-feasible solution
  - Possible to include outer-loop control (e.g. transformer tap changer), with an easier formulation
- Further work:
  - Security-Constrained AC LP-OPF
  - Consideration of preventive and curative measures
  - Consideration of overhead line temperature and thermal inertia

System Planning with Powsybl – Metrix Application to the GLMC-RTS model

**Nicolas Omont** Vice President of Operations, Artelys



# POWSYBL

### System Planning with Powsybl – Metrix Application to the GLMC-RTS model

Linux Foundation Energy – GMLC Webinar

### Introduction to Powsybl

- PowSyBI (Power System Blocks, <u>powsybl.org</u>) is an open-source framework written in Java and dedicated to power grid analysis and simulation
  - Created in 2012 (**iTesla** EU funded collaborative R&D project)
  - Community of 70 users



### Introduction to Metrix (1/2)

- An optimization model used to assess and optimize preventive and curative remedial actions to respect the network constraints on a high number of variants
  - Created in 2010 (fully open-sourced in 2021, including the linear solver)
  - Interfaced with PowSyBI



### Introduction to Metrix (2/2)

• Three computation modes

DC security analysis (N, N-k)

No optimization, simple power flow

#### Inputs:

- Network model
- Base case topology
- Contingencies (N-k)
- Load and generation timeseries (Gen. must match demand)

#### **Results:**

- Flows at each element (N)
- Max flow violations (N, N-k)

SC-DCOPF\* w/o redispatching (N, N-k)

#### Minimizing: max flow violations

#### Inputs:

- Same as DC security analysis
- Available topological remedial actions (preventive and curative)

#### **Results:**

- Same as DC security analysis
- Selected preventive actions
- Selected curative actions
- Remaining violations (N, N-k)

#### SC-DCOPF\* w/ redispatching (N, N-k)

**Minimizing global cost** while satisfying max flow constraints

#### Inputs:

- Same as DC security analysis
- Available preventive and curative actions
  - Topological remedial actions
  - Redispatch costs

#### **Results:**

- Same as SC-DCOPF without redispatching
- Production and consumption adjustments (redispatch, curtailment, loss of load)

48

\* SC-DCOPF = Security Constrained Direct Current Approximation Optimal Power Flow

A tutorial covering this functional perimeter is available online: <u>https://github.com/powsybl/powsybl-tutorials/tree/metrix/metrix/src/main</u> Tutorial introduction video: <u>https://vimeo.com/722882701</u>

Tutorial introduction pdf: https://github.com/powsybl/powsybl-tutorials/raw/metrix/metrix/src/main/resources/PowSyBl-metrix-6-node-tutorial-presentation.pdf

### Application on the RTS-GMLC model

- Study case building:
  - Loading the network from the Matpower format
  - Mapping annual non-dispatchable generation and load timeseries (8784 hourly time steps) to each node, as well as dispatchable generation initial set points.
- Study computation:
  - N-K analysis: single contingencies (N-1) on all 120 elements (lines+trafos)
  - Available remedial actions: preventive redispatch
  - Evaluation of the value of an inter-zone transmission line by comparison of the cases w/ and w/o this line.
    - Not in scope: topological actions, curative remedial actions, HVDC lines.
- Analysis (KPIs)
  - Flows on the four inter-zone transmission lines (in bold on the map)
  - Localization of their threats (i.e. the contingency leading to the largest flow on a given line)
  - Assessment of redispatch and curtailment to evaluate the decrease of generation costs brought by the inter-zone transmission line.



### Base case without contingencies (N)



### Base case with contingencies (N, N-1)



### Base case with contingencies: threat location



### Base case with contingencies: redispatch

#### Redispatch cost

Global demand according to the hourly redispatching price



- No congestion
- Increase of ~0.1 \$/MWh of additional load
- Increase of ~0.5 \$/MWh of additional load

### Value of a transmission line

Weekly generation cost

Mar 2020

400k

300k

200k

Cost (\$)

 Comparison with and without line 325-121, one of the two lines linking zone 1 and 3

Value of the inter-zone line 325-121

Jul 2020

Time

Line's total savings = \$3,7M/year

May 2020



### Conclusion on PowSyBI-Metrix

- PowSyBI Metrix is a SC-DCOPF
  - Handling both **preventive** and **curative** remedial actions
  - Including redispatching, HVDC set point adjustment and topological actions
  - Build for outstanding performance on sequential simulations (on independent timesteps)
- Illustration of preventive redispatching on the RTS-GMLC model
  - Maximum threat a line is subject to.
  - Cost of redispatch
  - Value of a line by comparison of redispatching cost w/ and w/o the line
- More info online:
  - Installation guide
  - A tutorial based on a 6-node grid illustrates all features:

https://github.com/powsybl/powsybl-tutorials/tree/metrix/metrix/src/main

### **PowerSimulations**

Clayton Barrows Senior Engineer, NREL

### PowerSystems.jl

#### Data:

- Transmission systems
- Quasi-static, technical and economic system operational data
- Dynamic parameters
- Time series
- Parsing from standard file formats (.m, .csv, .raw, dyr)
- De/serialization (compressed storage)
- Consistency checks
- Calculations
  - Network matrices (YBus, Adj, PTDF, LODF)
  - Power flow



### PyPSA2PowerSystems.jl

#### Creates a System from a PyPSA netCDF input or output file

#### NREL-SIIP/ PyPSA2PowerSystems.jl







### **PowerSimulations.jl**

- Formulations:
  - Devices: 55 formulations
  - Networks: 52 formulations (through integration with PowerModels.jl)
  - Services (reserves): 8 formulations
- Models:
- Decision Model: UC, ED... usually multi-period forecast data
  - Emulation Model: single period realization data
- Simulations:
  - Multiple executions: 365x UC
  - Multiple models:
    - 365x (UC 24x ED) = 365 + 8,760 = 9,125
    - 365x (DA 24x (HA 12x (RT 75x AGC))) = 365 + 8,760 + 105,120 + 7,884,000 = 7,998,245
    - LT DA, DA RT Emulation...
  - Co-simulation
    - Helics
    - Custom



### **Flexible Simulation Specifications**



### **Exercise Simulation Specification**

#### Simulation

#### **Decision Models**

| Model Name | Model Type       | Status | Output Directory |
|------------|------------------|--------|------------------|
| UC         | GenericOpProblem | EMPTY  | nothing          |

#### No Emulator Model Specified

#### Simulation Sequence

| Simulation Step Interval | 24 | hours |
|--------------------------|----|-------|
| Number of Problems       | 1  |       |

#### Simulation Problems

| Model Name | Horizon | Interval     | Executions Per Step |
|------------|---------|--------------|---------------------|
| UC         | 48      | 1440 minutes | 1                   |

|                   |        |                | Time   |        |                  | Allocations |         |  |
|-------------------|--------|----------------|--------|--------|------------------|-------------|---------|--|
| Tot / % measured: |        | 10.1s / 100.0% |        |        | 0.96GiB / 100.0% |             |         |  |
| Section           | ncalls | time           | %tot   | avg    | alloc            | %tot        | avg     |  |
| Build Simulation  | 1      | 10.1s          | 100.0% | 10.1s  | 0.96GiB          | 100.0%      | 0.96GiB |  |
| Build Problems    | 1      | 8.01s          | 79.1%  | 8.01s  | 859MiB           | 87.8%       | 859MiB  |  |
| Problem UC        | 1      | 7.87s          | 77.7%  | 7.87s  | 756MiB           | 77.2%       | 756MiB  |  |
| MonitoredLine     | 2      | 3.36s          | 33.2%  | 1.68s  | 229MiB           | 23.4%       | 115Mi8  |  |
| ThermalStandard   | 2      | 2.00s          | 19.8%  | 1.00s  | 302MiB           | 30.9%       | 151MiE  |  |
| Line              | 2      | 1.96s          | 19.4%  | 982ms  | 157MiB           | 16.0%       | 78.5MiE |  |
| HydroDispatch     | 2      | 204ms          | 2.0%   | 102ms  | 25.0MiB          | 2.6%        | 12.5MiB |  |
| RenewableDis      | 2      | 172ms          | 1.7%   | 86.1ms | 25.4MiB          | 2.6%        | 12.7MiE |  |
| PowerLoad         | 2      | 124ms          | 1.2%   | 61.8ms | 4.00MiB          | 0.4%        | 2.00Mi8 |  |
| Build pre-step    | 1      | 27.6ms         | 0.3%   | 27.6ms | 2.05MiB          | 0.2%        | 2.05Mi8 |  |
| CopperPlateP      | 1      | 8.39ms         | 0.1%   | 8.39ms | 7.16MiB          | 0.7%        | 7.16MiE |  |
| Objective         | 1      | 4.02ms         | 0.0%   | 4.02ms | 3.32MiB          | 0.3%        | 3.32MiB |  |
| Transformer2W     | 2      | 1.16ms         | 0.0%   | 581us  | 342KiB           | 0.0%        | 171KiE  |  |
| Services          | 2      | 2.19us         | 0.0%   | 1.09us | 0.00B            | 0.0%        | 0.005   |  |
| Initialize Simul  | 1      | 197ms          | 1.9%   | 197ms  | 10.4MiB          | 1.1%        | 10.4Mi  |  |
| Initialize Simul  | 1      | 2.80ms         | 0.0%   | 2.80ms | 1.59MiB          | 0.2%        | 1.59Mi  |  |
| Serializing Simu  | 1      | 667us          | 0.0%   | 667us  | 10.6KiB          | 0.0%        | 10.6Ki  |  |
| Check Steps       | 1      | 28.4us         | 0.0%   | 28.4µs | 352B             | 0.0%        | 3528    |  |

#### Fuel

#### PowerGraphics.jl

- Plot types: bar, stack, line, (coming soon: networks)
- Data: System, PSI.Results, (coming soon: PSID.Results)
- Backends: GR (static), PlotlyJS (basic interactivity)





solved network RTS GMLS base+gen expansion

#### solved\_network\_RTS\_GMLS\_base+gen\_and\_line\_expansion



#### solved\_network\_RTS\_GMLC\_base+line\_expansion



#### 



#### **Example Scenario Results**

#### solved\_network\_RTS\_GMLS\_base+gen\_expansion

solved\_network\_RTS\_GMLC\_base+line\_expansion



#### solved\_network\_RTS\_GMLS\_base+gen\_and\_line\_expansion





#### **Example Scenario Results: Annual Generation**

## All results are accessible in DataFrames

| julia> prices_ts<br>8736×5 DataFrame<br>Row DateTime<br>DateTime                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>solved_network_RTS_GMLC_base+line_expansion Float64</pre>                                                                                                                          | <b>solved_network_RT</b><br>Float64 | S_GMLS_1p5xload+0emissio | n+gen_and_line_expansi                                                                                                                    | on solved_networ<br>Float64 | k_RTS_GMLS_base+gen_and_line_expansion                                                                                      | <pre>solved_network_RTS_GMLS_base+gen_expansion Float64</pre>                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2022-06-22T08:00:00<br>2 2022-06-22T03:00:00<br>3 2022-06-22T03:00:00<br>4 2022-06-22T03:00:00<br>5 2022-06-22T04:00:00<br>6 2022-06-22T06:00:00<br>7 2022-06-22T06:00:00<br>9 2022-06-22T07:00:00<br>10 2022-06-22T09:00:00<br>11 2022-06-22T10:00:00<br>12 2022-06-22T11:00:00<br>13 2022-06-22T12:00:00<br>14 2022-06-22T12:00:00<br>15 2022-06-22T13:00:00<br>16 2022-06-22T13:00:00<br>17 2022-06-22T13:00:00<br>18 2022-06-22T15:00:00<br>18 2022-06-22T15:00:00<br>18 2022-06-22T15:00:00 | 2184.39<br>2164.79<br>2218.63<br>2273.25<br>2328.67<br>2598.83<br>2632.43<br>2461.74<br>2598.83<br>2461.74<br>2387.54<br>2365.77<br>2365.77<br>2365.77<br>2365.77<br>2365.77<br>2365.77 | 1.00×10 <sup>6</sup>                |                          | -238.0<br>-230.0<br>-238.0<br>-238.0<br>-238.0<br>-238.0<br>-238.0<br>-238.0<br>-8.0<br>-8.0<br>-8.0<br>-8.0<br>-8.0<br>-8.0<br>-8.0<br>- |                             | 2296.85<br>2273.25<br>2307.0<br>2320.67<br>2575.9<br>2775.48<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0. | 2296.85<br>2273.25<br>2387.0<br>2320.67<br>2575.9<br>2775.48<br>2775.48<br>2775.48<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0. |
| 19 2022-06-22118:00:00<br>20 2022-06-22119:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3053.02<br>2705.06                                                                                                                                                                      | 7.50×10 <sup>5</sup>                |                          |                                                                                                                                           |                             | <pre>solved_network_RIS_GMLS solved_network_RTS_GMLS solved_network_RTS_GMLS</pre>                                          | _1p5xload+0emission+gen_and_line_expan<br>_base+gen_and_line_expansion<br>_base+gen_expansion                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         | 5.00×10 <sup>3</sup>                |                          |                                                                                                                                           |                             |                                                                                                                             |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         | 0 <u>-</u>                          | 2000                     | 4000 6000                                                                                                                                 | 8000                        | -                                                                                                                           |                                                                                                                                                   |

#### PowerSimulations.jl Benchmarks



| Variable                | DI EVOS LIC             | DI EVOS ED                    | DELTIC                  | DCIED                        |
|-------------------------|-------------------------|-------------------------------|-------------------------|------------------------------|
| variable                | FLEAOS UC               | FLEAO3 ED                     | F31 UC                  | FOLED                        |
| Gas - CC [MW]           | $5.26228 \times 10^{5}$ | $5.06635 \times 10^{5}$       | $5.29018 \times 10^{5}$ | $5.05629 \times 10^{5}$      |
| Combustion Turbine [MW] | 1751.0                  | 1807.75                       | 1651.0                  | 1550.35                      |
| Hydropower [MW]         | $2.21594 \times 10^{5}$ | $2.21534 \times 10^{5}$       | $2.21594{	imes}10^5$    | $2.21534 \times 10^{5}$      |
| Nuclear [MW]            | $1.44 \times 10^{5}$    | $1.44 \times 10^{5}$          | $1.44 \times 10^{5}$    | $1.44 \times 10^{5}$         |
| Steam [MW]              | $6.15146 \times 10^{5}$ | $6.142 \times 10^{5}$         | $6.13056{	imes}10^5$    | $6.14076 \times 10^5$        |
| Renewables [MW]         | $3.90612 \times 10^{5}$ | $3.53815 \times 10^{5}$       | $3.90013 \times 10^5$   | $3.54877 \times 10^{5}$      |
| Total Cost [\$]         | $5.56758 \times 7$      | $2.708285 \times 7^{\dagger}$ | $5.56247 \times 7$      | $2.68851 \times 7^{\dagger}$ |
|                         |                         |                               |                         |                              |

<sup>†</sup>The total cost comparison for the ED stage is done for the fuel cost only due to the reporting from PLEXOS

### PowerSimulations.jl for reserve deployment modeling

- Model the allocation and deployment mechanisms of Frequency Regulation Reserve (FRR) in a quasi-steady state model.
- Use mathematical programming to pose it as an optimization problem.
- Use fast optimization solvers to accelerate the studies.
- Evaluate a study case with a Unit Commitment (UC) model, an Economic Dispatch (ED), and our proposed AGC formulation.





#### Scalable Integrated Infrastructure

#### **Planning for Power Systems**

SIIP::Power

NREL-SIIP

PowerSystems.il PowerSimulations.il PowerSimulationsDynamics.jl





#### **PowerSystems.jl**

#### **Rigorous power system** data model:

- **Parsers** .
- **Time series** •
- **Quasi-static model** data
- **Dynamic model data** ٠
- **Basic power-flow** calculations



Mathematical formulations and simulation assemblies:

- **Quasi-static problems** and simulations
- PCM, UC/ED, OPF

.

.

- **Reserve co-optimization** .
- **AGC/ACE** simulation ٠
  - **Integrated with** PowerModels.jl



**PowerSimulations** Dyanmics.jl

Scalable stability modeling:

- Advanced AD •
- Small signal stability
- **Full dynamic simulations**
- Low inertia simulation capabilities
- **Modular separation** between device model and numerical integrator

Lightweight interactive visualizations:

1 day

PowerGraphics.jl

- **Extensible and** configurable graphics
- Interactive visualizations with PlotlyJS
- Supports results generated with **PowerSimualtions.jl**



**Extensions** 

SIIPExamples.jl

PowerModelsInterfaces.il

HydroPowerSimulations.jl

**PowerSimulationsDemand** Response.jl

**ReliablePowerSimulations.il** 

PowerSystemCaseBuilder.jl

# Outcomes and Lessons

Clayton Barrows Senior Engineer, NREL

### Need for better data specifications and formats

- Common Information Model (CIM) designed for operational data exchange
- Model specific (MATPOWER, PSS/e.raw) formats are incomplete
- Is there a need for something in-between?
  - RTS-GMLC (not well defined, but could be a starting point)

#### Outcomes

- PyPSA2PowerSystems.jl
- PowerSystems.jl -> PowerModels.jl -> MATPOWER.m
- RTS-GMLC -> PowSyBI-Metrix
- RTS-GMLC -> PyPSA
- RTS-GMLC -> pandapower
- Improved pandapower -> PyPSA

### Q&A

globalpst.org/


## Thank you!

globalpst.org/



## Sample panel questions

- What aspects of each tool demonstration are open/closed source?
- How do you obtain support?
- What can be done to improve these types of workflows?
- Is there a need for a "planning" data specification?
  - Yes, (partially) addressed by PEMMDB for planning in Europe (pan-european market model database)
  - Opportunities for coordination on defining specification