

Maximize Impact with Open Energy Planning Solutions

OET energy modelling exchange

Dr. Maximilian Parzen January 13th 2025

Introduction

Maximilian Parzen

Co-Founder & CEO

PhD in Energy System Modelling University of Edinburgh

Our Goal as Non-Profit Company:

Accelerating the energy transition by empowering energy planners through open-source software and open data solutions.

Our Approach:

- Perform reproducible energy planning studies
- Advance open-source software and open data for energy planning
- Provide reliable industry support and training

Our Clients and Partners:

- Transmission System Operators (e.g. ENTSO-E)
- Regulators (e.g. ACER)
- Non Governmental Organizations (e.g. Project Innerspace, EDF)
- Universities (e.g. Stanford University)
- Industries (e.g. Form Energy)
- Philanthropies (e.g. Breakthrough Energy, Google.org)

GOAL:

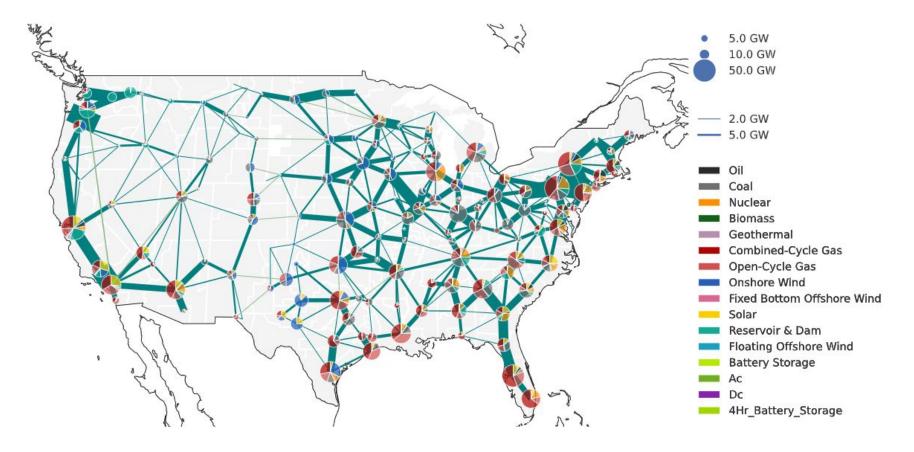
- 1. Learn about Grid Modelling Landscape
- 2. Learn about Storage Modelling Challenges
- 3. Learn about PyPSA capabilities

GOAL:

Learn about Grid Modelling Landscape Learn about Storage Modelling Challenges Learn about PyPSA capabilities

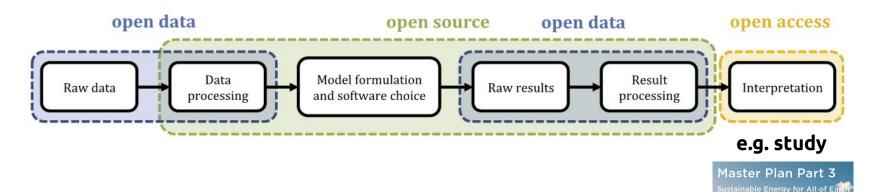
Tools and Applications

Category	Real-time Models	Market Models	Investment Models		
Applications	Operational feasibility, reliability and power quality assessments.	Production cost optimization, market simulation, resource adequacy.	Investment decisions, technology assessment, resource adequacy, decarbonization pathways.		
Tools (proprietary)		PLEXOS			
	PowerFactory/ PSSE				
Tools (open-source)		PyPSA/ GenX			
	PowSyBl/ Sienna				


System Models usually Minimise System Costs

[3] Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance



Dispatch and investment co-optimization example - PyPSA-USA Model

What is Open Modelling?

Benefits:

- + Transparency = Trust
- + No vendor lock-in = Freedom
- + No need to reinvent the wheel = Faster innovation
- + Faster insight generation (e.g. model generators like PyPSA-Earth save 10x time)

= Faster and better energy transition planning

Energy Planning Software Landscape in 2025

Open-Source Tools (10M EUR/year) Proprietary Tools (2000M EUR/year)

What was holding back open-source solutions?

- Missing commercial support
- Missing functional coverage
- Missing reference list
- Missing knowledge/ marketing

• ...

OS energy planning is coming!

- More than 500k downloads per year*
- Used by system operators, traders, regulators, manufacturers, universities
- People start implementing alternative solutions to proprietary software (e.g. OET enhances or replaces proprietary software tools with open-source solutions)

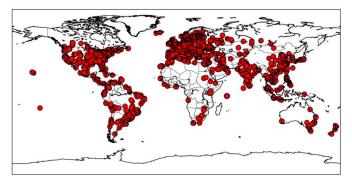


Fig. Showing PvPSA download locations @credit to Tom Brown

GOAL:

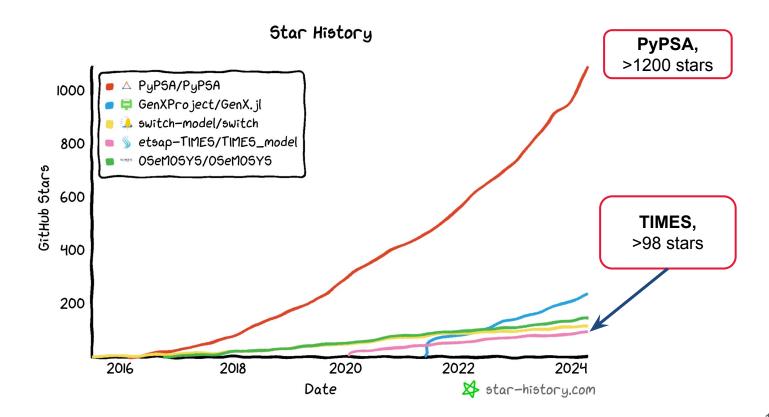
Learn about Grid Modelling Landscape Learn about Storage Modelling Challenges Learn about PyPSA capabilities

- Bad system data
 - Bad input assumptions (missing grid data etc.)
- Bad system modelling
 - Low spatial / temporal / technological resolution
 - Unintended storage cycling (=simultaneous charging/discharging)
 - Constrained energy storage sizes
 - Missing sector coupling

In total ~30% impact on total system cost and large impact on optimal tech mix

GOAL:

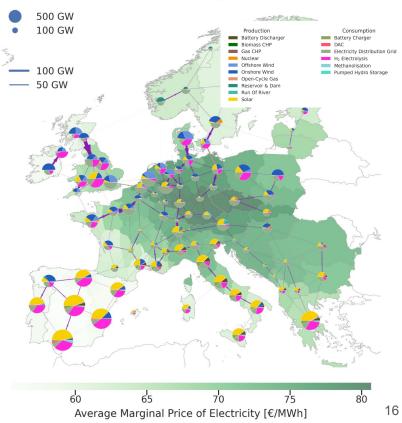
- Learn about Grid Modelling Landscape
 Learn about Storage Modelling Challenges
- 3. Learn about PyPSA capabilities



PyPSA

An open source toolbox for simulating and optimising modern power and energy systems

PyPSA - Tool Adoption Indicators



Performance example

	Power Only	Sector Coupled
Туре	Single year	Single year
Spatial Resolution	110 nodes	110 nodes
Temporal Resolution	3h	3h
# Constraints	11.4M	46M
# Variables	5.4M	21M
# Non-Zeros	23.3M	112M
Memory Peak	11 GB	80 GB
Solving time	0.5h	29h

Electricity Balance (CO₂-Grid Model)

Model type + Existing Technical Capabilities Part I

Capacity expansion (linear)

- Co-optimization of invest+operations
- Single-horizon (single-year, myopic)
- Multi-horizon (perfect foresight)
- Modeling to Generate Alternatives (MGA), Monte-Carlo Sampling
- Solve LP, MILP and QP problems

Market modelling (linear)

Optimization Problems

- Linear optimal power flow (LOPF)
- Security-constrained LOPF (N-1, N-X)
- Unit commitment
- Dispatch & redispatch

Non-linear power flow

• Newton-Raphson

• Generators: with unit commitment and hourly time series

• **Transmission**: Meshed AC-DC networks (Transmission)

- **Storage**: Includes efficiency losses and inflow/spillage for hydro
- **Conversion** between energy carriers & materials (enables PtX, CHP, BEV, DAC, CO2 networks, material/data flows, ...)

Planned Technical Capabilities

- Uncertainty:
 - Stochastic single stage optimization (Ongoing dev)
 - Bender-decomposition (Maybe, screening of literature especially GenX)

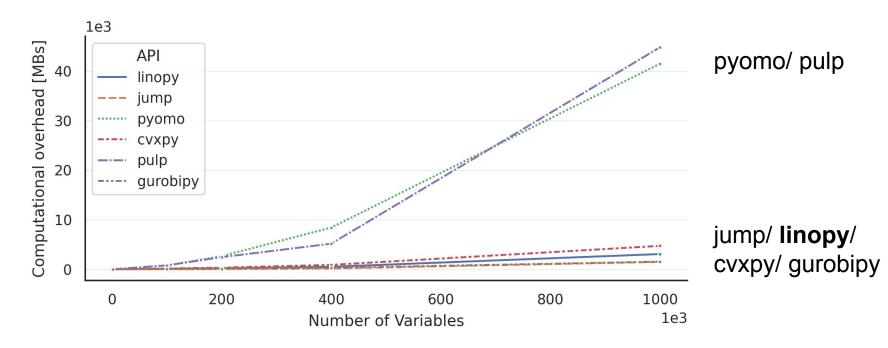
• Feature:

- Linearised gas pipeline flow (Concept done)
- Disaggregation methods from low to high-res networks (Done, but not in main branch)
- Add missing power flow components for better interoperability (Concept done)

• Backend:

- Pydantic for stable interfaces/type checking (Maybe)
- Polars instead of Pandas for slight performance increase (Maybe)
- Solver callbacks implementation in Linopy (Maybe)
- PyOptInterface for solver interface acceleration (Maybe)

Interoperability


Converters that import and/or export the PyPSA network file.

- PyPOWER
- Pandapower
- Switch
- EnergyRT
- GenX (not public)
- Sienna-Invest (planned)
- Others ...

Speed and **memory** matters. PyPSA is build on top of solver interface **Linopy**.

The **programming language** is **<u>not</u> the speed bottleneck** for capacity expansion and market modelling

<u>Time spent for each optimization:</u>

Time in other programming language

(e.g. mainly solver interface like JuMP for Julia or Linopy for Python, GAMS)

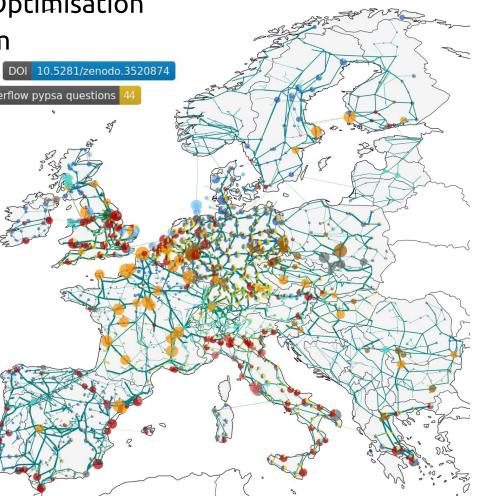
NEWS - "Python solver interfaces can be faster than other options"

Solver interface benchmark

Model	Variables	C++	PyOptInterface	JuMP	gurobipy	Pyomo
fac-25	67651	0.2	0.2	0.2	1.2	4.1
fac-50	520301	0.8	1.2	1.8	9.7	32.7
fac-75	1732951	2.7	4.1	6.6	32.5	119.3
fac-100	4080601	6.3	10.0	17.8	79.1	286.3
lqcp-500	251501	0.9	1.5	1.3	6.3	23.8
lqcp-1000	1003001	3.7	6.0	6.1	26.7	106.6
lqcp-1500	2254501	8.3	14.0	17.7	61.8	234.0
lqcp-2000	4006001	14.5	24.9	38.3	106.9	444.1

Python

Time (second) to concrete model and page it to Curchi entimizer


Julia <u>https://www.linkedin.com/posts/maximilian-parzen-b047a1126_python-pytoptinterface-optimization-activity-7185910141442043905-3Mgy</u>

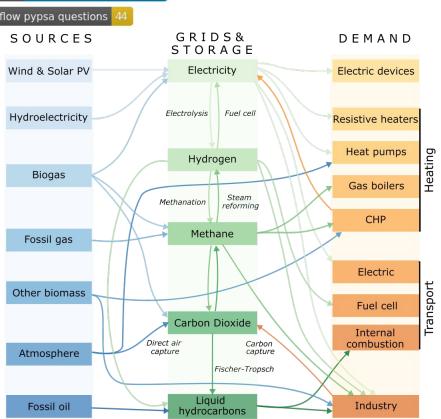
PyPSA-Eur: A Sector-Coupled Open Optimisation Model of the European Energy System

<u>Automated</u> workflow to build **European PyPSA networks** from open data. The network includes:

- all AC lines at and above 220 kV, substations and (planned) HVDC links,
- a database of existing power plants,
- time series for electrical demand,
- time series for wind/solar availability, and geographic potentials
- methods for model simplification

PyPSA-Eur: A Sector-Coupled Open Optimisation Model of the European Energy System

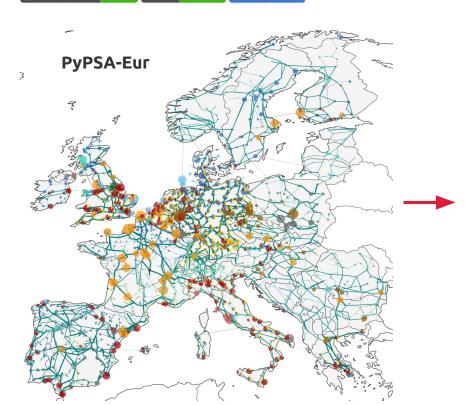
repo size 109.3 MiB DOI 10.5281/zenodo.3520874

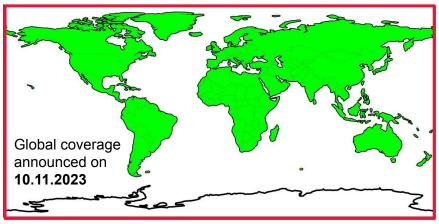

 DOI
 10.5281/zenodo.3938042
 snakemake ≥8.14.0
 REUSE compliant
 stackoverflow pypsa questions

 Need to decarbonise all sectors obeying spatial and temporal constraints.
 S O U R C E S
 Wind & Solar PV

Sector-coupled power system model, including

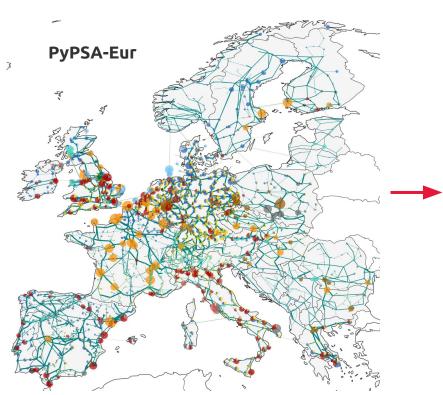
release v0.13.0 () Test workflows passing docs passing


- transport sector
- heating sector
- industry sector
- international shipping and aviation
- industrial feedstocks and biomass
- better carbon management
- hydrogen and gas networks
- pathway optimisation (myopic)

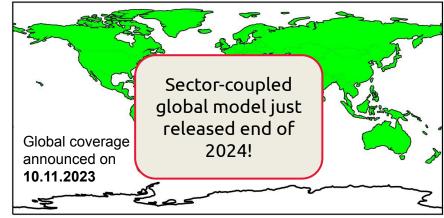

PyPSA-Earth. A Flexible Python-based Open Optimisation Model to Study Energy System Futures

Test workflows passing docs passing repo size 26.5 MiB License AGPLv3 REUSE compliant code style black

PyPSA-Earth extends the **automated model workflow** for the **rest of the world**.



workflow runs


PyPSA-Earth. A Flexible Python-based Open Optimisation Model to Study Energy System Futures

Test workflows passing docs passing repo size 26.5 MiB License AGPLv3 REUSE compliant code style black

PyPSA-Earth extends the **automated model workflow** for the **rest of the world**.

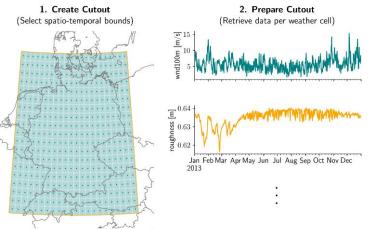
workflow runs

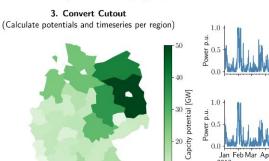
"DATA IS THE NEW GOLD"

Data tools maintained in the PyPSA universe

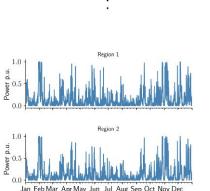
- atlite. A Python package to convert weather data to energy system data
- powerplantmatching. A Python package for creating a more complete power plant database
- earth-osm. A Python package to extract large amounts of OpenStreetMap energy infrastructure data
- technology-data. Python package to compile techno-economic assumptions for energy system models

Atlite: A Python Package for Calculating Renewable Power Potentials and Time Series




Atlite can also perform **land eligibility analyses**, differentiating between conflicting land use options:

- Exclude protected and reserved areas
- Exclude farm land
- Exclude cities for certain technologies
- Increase potential in deserts


It can also convert **global weather data** into **energy systems data**:

- solar photovoltaics & thermal collectors
- wind turbines
- hydro run-off, reservoir, dams
- heat pump COPs
- dynamic line rating
- heat demand (HDD)

-10

Open

from the creators of PyPSA meets Earth

Energy Transition

Big open data efforts in 2025!

1. Improve globally **<u>open</u> grid data** coverage and quality!

from the creators of PyPSA meets Earth

2. Create a global **<u>open</u> electricity time series** database!

3. Improve existing **open-source** data tools!

THANK YOU!

- Bad system data
 - Bad input assumptions (missing grid data etc.)
- Bad system modelling
 - Low spatial / temporal / technological resolution
 - Models with high-resolution capacity placement for wind and solar reduce total system costs by up to 10%.
 - Models with high network resolution that better consider congestion, increase total system costs by 23%.
 - Models that include a mix of affordable long-term/ short-term storages options reduce total system costs by 20%.

Source: Frysztacki, Brown, et al. (2021), The strong effect of network resolution on electricity system models with high shares of wind and solar, Applied Energy, <u>https://doi.org/10.1016/j.apenergy.2021.116726</u>, Parzen et al. (2023) . "The Value of Competing Energy Storage in Decarbonized Power Systems". arXiv, <u>https://doi.org/10.48550/arXiv.2305.0979</u>

- Bad system data
 - Bad input assumptions (missing grid data etc.)
- Bad system modelling
 - Low spatial / temporal / technological resolution
 - Unintended storage cycling (=simultaneous charging/discharging)
 - Models with USC misleadingly show increased full load hours by up to 23% for energy storage and 5% for RES
 - Constrained energy storage sizes
 - Missing sector coupling

Source: Parzen et al. (2023), Reducing energy system model distortions from unintended storage cycling through variable costs, iScience, <u>https://doi.org/10.1016/j.isci.2022.105729</u>

- Bad system data
 - Bad input assumptions (missing grid data etc.)
- Bad system modelling
 - Low spatial / temporal / technological resolution
 - Unintended storage cycling (=simultaneous charging/discharging)
 - Constrained energy storage sizes
 - Models with flexible energy storage energy to power ratios
 reduces the total system costs by 10%.
 - Missing sector coupling

Source: Parzen et al. (2022), Beyond cost reduction: improving the value of energy storage in electricity systems, Carbon Neutrality, https://doi.org/10.1007/s43979-022-00027-3

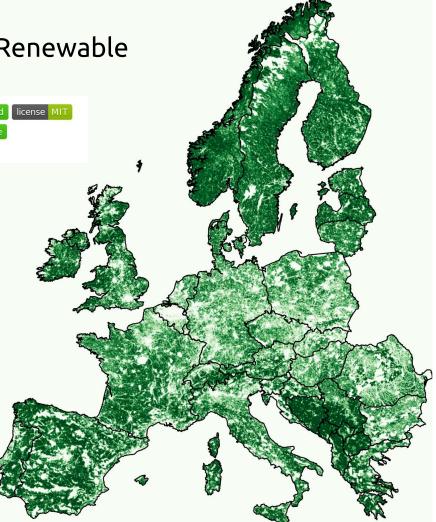
- Bad system data
 - Bad input assumptions (missing grid data etc.)
- Bad system modelling
 - Low spatial / temporal / technological resolution
 - Unintended storage cycling (=simultaneous charging/discharging)
 - Constrained energy storage sizes
 - Missing sector coupling
 - Models with sector coupling can reduce total system costs by up to 28%.

Source: Brown et al. (2018), Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system, Energy, <u>https://doi.org/10.1016/j.energy.2018.06.222</u>

PyPSA - Tool Adoption Indicators

downloads 292k downloads/month 7k Forks (Code Copies): 429 Issues (Ideas/Bugs): 83 Open - 233 Closed Pull Requests (Code changes): - 22 Open More than 2000 closed Pull 514 Closed **Request** in the models Discord members: ~1000 PyPSA-Earth, PyPSA-USA, Google Groups members: 749 **PyPSA-Eur Questions per month:** 70 Total questions answered: ~1500

Atlite: A Python Package for Calculating Renewable Power Potentials and Time Series


pypi v0.2.12	conda-forge v0.2.12	docs passing 💭 CI	passing	Codecov 72%	readme style standard	license MIT			
REUSE compli	ant code style black	📀 pre-commit.ci pass	sed JOSS	10.21105/joss.032	94 🧰 chat 33 online				
stackoverflow pypsa questions 14									

Atlite can also perform **land eligibility analyses**, differentiating between conflicting land use options:

- Exclude protected and reserved areas
- Exclude farm land
- Exclude cities for certain technologies
- Increase potential in deserts

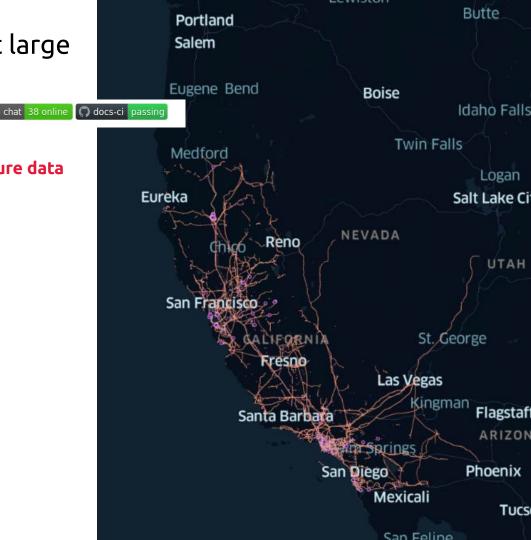
It can also convert **global weather data** into **energy systems data**:

- solar photovoltaics & thermal collectors
- wind turbines
- hydro run-off, reservoir, dams
- heat pump COPs
- dynamic line rating
- heat demand (HDD)

earth-osm. Python tool to extract large amounts of OSM data

codecov 59%

C CI passing License


Python package for extracting **power infrastructure data** from **openstreetmap (OSM)**:

- substations
- transmission lines

conda-forge v0.1.0

- distribution lines
- gas pipelines
- generators
- buildings

and more ... thanks to the OS community!

OSM Data Quality Check: Europe

- OpenStreetMap data is great in many cases!
- Potential to get better than anything else! (e.g. real routing, accurate line parameters)
- OET working with Breakthrough Energy to improve OSM grid data worldwide

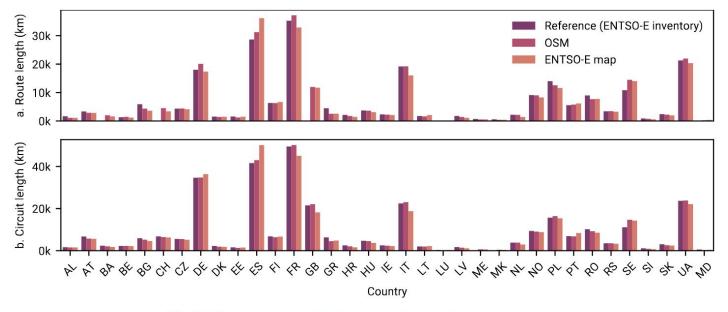


Figure 6. Comparison of total route and circuit lengths per country.

Full paper: https://arxiv.org/pdf/2408.17178

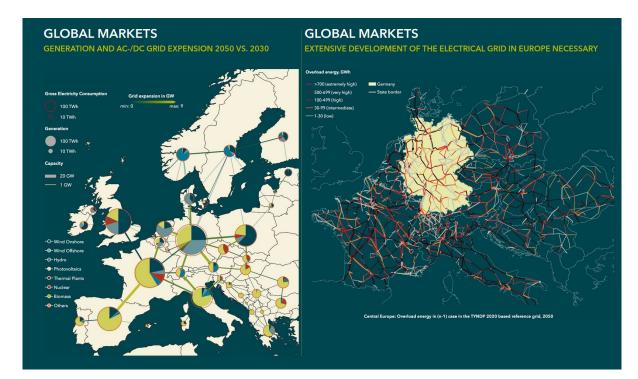
release v0.6.2 docs failing license GPL-3.0 repo size 85.8 MB DOI 10.5281/zenodo.3994163 chat on gitter

• compiles techno-economic assumptions on energy system components

- investment costs, FOM costs, efficiencies, lifetimes
- for given years, e.g. 2030, 2040, 2050
- from mixed sources (e.g. Danish Energy Agency, **NREL ATB**, PNNL)
- outputs have standardized cost years, technology names, and units

531	Raw Blame 🖉 🕶 นี้							
Q Search this file								
1	technology	parameter	value	unit	source			
2	Ammonia cracker	FOM	4.3	%/year	Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.			
3	Ammonia cracker	investment	1062107.74	EUR/MW_H2	Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.			
4	Ammonia cracker	lifetime	25.0	years	Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.			

https://github.com/PyPSA/technology-data/blob/master/outputs/costs 2030.csv


Impactful Outputs with PyPSA

(full list available at: https://pypsa.readthedocs.io/en/latest/references/users.html and https://openenergytransition.org/projects.html)

Example - Modeling future European requirements

TransnetBW, a German Transmission System Operator, uses PyPSA to explore future continental infrastructure requirements to meet decarbonisation targets in all sectors by 2050.

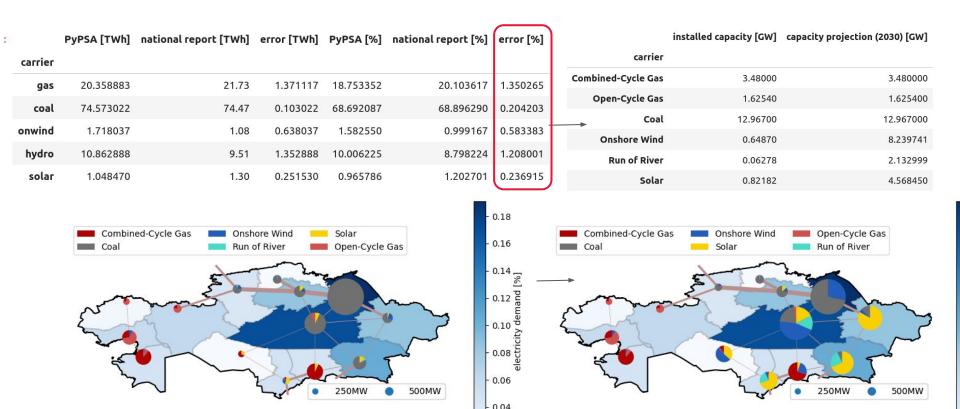
Example - Supporting Transmission System Operators

OET works with **German TSO, TransnetBW,** to improve their open energy system modelling setup. **Why?** Our work lead to quicker updates, better software quality, easier OS contributions and costs savings.

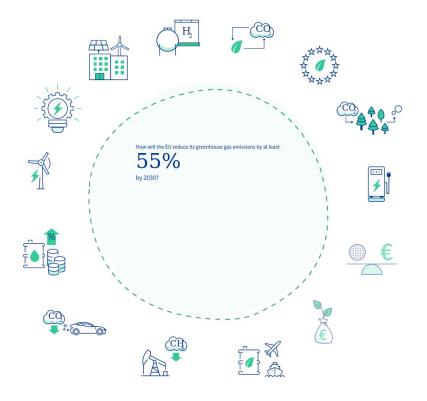
Example - Supporting Openmod and Training People

OET was invited for a training at **Stanford University**. Why? We have more than a handful "world-class" open-source maintainers and creators. We took the opportunity to also revive openmod in US.

Stanford ENERGY **Bits & Watts Initiative** Sustainability

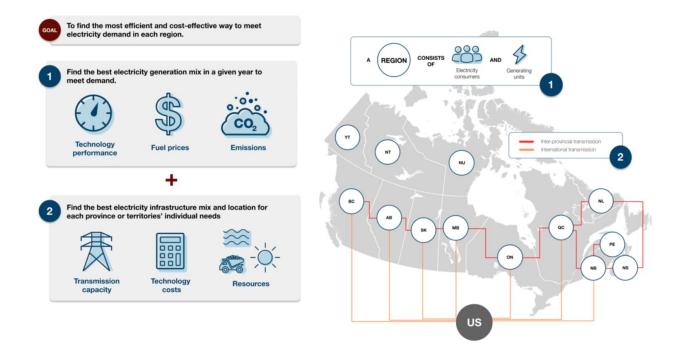

open energy modelling initiative openmo

Example - Reproducing the Kazakh power system



OET built a tailored PyPSA-KZ model based on PyPSA-Earth to demonstrate that PyPSA can **replicate todays operation** of the electricity grid. Why? A validated open-source model **builds trust** and is the perfect start to model future projections.

Example - Modeling the European Fit for 55 Project



The Joint Research Centre (JRC) of the European Commission re-build modeling scenarios to model the European Fit for 55 **Project** using PyPSA. Why? To convince Bruxelles that the EU should move to open modelling. Initially, they were using an energy model developed by Artelys for the European Commission.

Example - Modeling future Canadian requirements

The **Canada Energy Regulator,** the agency of the Government of Canada under its Natural Resources Canada portfolio, used PyPSA to explore future continental infrastructure requirements to meet decarbonisation targets by 2050.

Disclosure

#NO #PYPSA #FANATICS

We have multiple open source <u>core</u> maintainers in the team:

- **PyPSA** (Max, Martha, Fabian, Katia, Davide, Hazem, Jonas, Johannes)
- TIMES (Sid)
- **Temoa** (Daniel, Gianvito)

... our goal is to **help people** to adopt good OS solutions!